arXiv:2203.07806v1 [cs.CR] 15 Mar 2022

This is not the padding you are looking for!
On the ineffectiveness of QUIC PADDING against website fingerprinting

Ludovic Barman* ¥ Sandra Siby*

Christopher Wood” Marwan Fayed” Nick Sullivan®

Carmela Troncoso*

*EPFL TCloudflare Inc.

Abstract

Website fingerprinting (WF) is a well-know threat to users’
web privacy. New internet standards, such as QUIC, include
padding to support defenses against WE. We study whether
network-layer padding can indeed be used to construct effective
WF defenses. We confirm previous claims that network-layer
padding cannot provide good protection against powerful ad-
versaries capable of observing all traffic traces. In contrast to
prior work, we also demonstrate that such padding is ineffec-
tive even against adversaries with partial view of the traffic.
Network-layer padding without application input is ineffective
because it fails to hide information unique across different
applications. We show that application-layer padding solutions
need to be deployed by both first and third parties, and that they
can only thwart traffic analysis in limited situations. We iden-
tify challenges to deploy effective WF defenses and provide
recommendations to reduce these hurdles.

1 Introduction

New standardization efforts have greatly increased the pri-
vacy of web traffic: e.g., Encrypted Client Hello (ECH) [1] to
encrypt Server Name Indication (SNI), or (Oblivious) DNS-
over-HTTPS [2, 3] and DNS-over-TLS [4] to encrypt DNS
queries. Yet, encryption alone cannot protect users’ browsing
history from traffic analysis. Traffic-analysis attacks such as
website fingerprinting (WF), enable adversaries to infer which
websites a user visits from the traffic patterns (e.g., volume of
packets exchanged or packets’ size) [5, 6, 7, 8, 9, 10].

“To provide protection against traffic analysis [...]”, the
working group behind QUIC, the next transport layer stan-
dard for the Web, introduced a PADDING frame in the specifi-
cation [11]. In this work, we demonstrate that defenses solely
based on padding QUIC traffic are ineffective against WF
attacks. This is because the most important feature is the to-
tal size of the websites, which is not known at the network
layer and therefore cannot be effectively protected without

*Ludovic Barman is currently at Google.

application-layer information. We then study the potential of
application-layer defenses and identify the obstacles that im-
pede their deployment at large scale.

Our contributions are as follows:

v We show that, even against a limited adversary who only
observes partial web traffic traces and has realistic compu-
tation capabilities, network-layer defenses that use the
PADDING frame to hide the size of packets and inject
dummy packets cannot prevent adversaries from infer-
ring users’ browsed web pages. These characteristics are
sufficient to enable website identification with high per-
formance (> 92% F1 score). We conclude that network
defenses cannot effectively hide traffic global statistics un-
less there is communication with the application layer to
provide this information (e.g., the total number of packets,
or the total incoming size).

v/ We study whether the capabilities of the adversary affects
the attack performance. We show that traffic visibility is
of paramount importance; and few ASes have vantage
points to observe full traffic traces to run these attacks.
These ASs would incur high costs to collect and transmit
traces to a node with enough analysis capability. Yet, we
show that even using limited information from typical
network statistics (e.g., NetFlow) are sufficient to perform
high-performance traffic analysis.

v' We show that the centralization of web resources on the
Internet, in particular in the hands of Google, increases the
traffic analysis threat: traffic analysis on solely the timing
of Google resources fetched by a webpage achieves >
77% F1 score while reducing the adversary’s cost by four
orders of magnitude. Moreover, any AS between the client
and Google, in addition to ASes between the client and
the first-party domain host, can now perform attacks.

v We explore whether application-layer defenses, i.e., re-
source manipulation and resource addition at the server
and client, are a viable approach to thwart fingerprinting.
We show that any defense has to be applied to all first- and
third-party domain traffic. In most cases, application-layer

defenses suffer from the same issues as network-layer de-
fenses due to difficulty in hiding global statistics. In the
cases where application-layer defenses are more effec-
tive, they are impaired by deployment challenges due to
current practices to develop and host web resources.

v We identify key deployment challenges associated with
current web practices. We provide recommendations to
guide future efforts in designing building blocks and de-
fenses against website fingerprinting attacks.

Ethical considerations: We conduct traffic-analysis attacks
against a deployed technology (QUIC). We do not perform any
collection or analysis of real users’ traffic. We only collect our
own traffic, generated by an automated browser. We uncover
vulnerabilities in the proposed defenses, which would put at
risk network users if deployed. We believe that the benefits of
our research which can guide current and future standardization
efforts to outweigh these risks, by avoiding deployments that
could give users a false sense of security. We have performed
responsible disclosure of our findings to QUIC’s IETF WG.

2 Background & Related Work

QUIC. QUIC is a connection-oriented protocol built on top
of UDP that aims to provide low-latency, multiplexed, secure
communication with less head-of-line blocking and faster con-
nection migration [12]. QUIC was standardized in May 2021
and is currently being developed by the IETF. QUIC is the
transport protocol for HTTP/3. Adoption of QUIC and HTTP/3
has been rising (as of Oct 2021, they are used by 21.3% of the
top 10 million websites [13]). Of particular relevance for our
work is the QUIC PADDING Frame. The IETF QUIC draft de-
scribes it as a frame with no semantic value, that can be used to
increase packets size, and to provide protection against traffic
analysis [11]. We investigate whether this frame is suitable to
protect QUIC traffic against website fingerprinting attacks.

Website fingerprinting attacks. In website fingerprinting, an
adversary aims to infer the website visited by a user by analyz-
ing network traffic. The adversary builds a classifier trained on
features obtained from website network traces. These features
can be selected manually or via automatic extraction.

The most relevant attacks that rely on manual extraction
are Wang et al.’s k-Nearest Neighbors (k-NN) classifier based
on 3000 manually-selected features [14]; Panchenko et al.’s
Support Vector Machines (SVMs)-based classifier, CUMUL,
based on cumulative sums of packet lengths [15]; and Hayes
and Danezis [16] k-fingerprinting method (k-FP), which mod-
els web fingerprints as the leaves of a random forest built on
150 manually-selected features.

Rimmer et al. [17] were the first in demonstrating that and
found that automated feature extraction using deep learning
neural networks (DNNs) results in attacks that perform as well
as manual approaches and are more robust. Sirinam et al.’s [18]
built on this observation to develop an attack that achieves high

accuracy even in the presence of defended traces. Var-CNN
by Bhat et al. [19] show that it is possible to achieve high
accuracy with deep learning even in the presence of limited
data, relying on ResNets trained on packet directions, packet
times, and manually extracted summary statistics.

Website fingerprinting on QUIC traffic. Smith et al. [10] stud-
ied the impact of co-existence of TCP and QUIC on the per-
formance of website fingerprinting using k-FP and Var-CNN.
They concluded that, while QUIC traffic is not difficult to fin-
gerprint, classifiers trained on TCP traffic do not perform well
on QUIC traffic, and that jointly classifying both protocols
is hard. They also show that k-FP outperforms Var-CNN in
presence of QUIC. To enable comparison with the state-of-
the-art on QUIC website fingerprinting [10], we also use k-FP
and Var-CNN in our evaluation. We avoid more recent ap-
proaches [18, 20] that could yield better performance, as it
comes at the cost of explainability. Since our aim is to under-
stand the impact of the attack on padding defenses, we favor
explainability over performance.

Website fingerprinting defenses. Dyer et al. [21] showed that
network-layer defenses padding and morphing based counter-
measures are ineffective in thwarting traffic analysis since they
fail to hide coarse packet features. They proposed Buffered
Fixed-Length Obfuscation (BuFLO) which pads packets to a
fixed size at sends them at intervals of time. This results on a
huge overhead, which was later reduced by CS-BuFLO [22]
and Tamaraw [23], still being impractical. Works such as WTF-
PAD [24] and FRONT [25] reduce this overhead by injecting
dummies at appropriate positions in a trace. WTF-PAD in-
jects dummy packets using a pre-defined distributions of inter-
arrival times to detect gaps, and FRONT injects dummy packets
in the front portion of traces, which are known to contain the
most information for fingerprinting. Both approaches achieve
low protection against DNN attacks [18, 19, 26].

Alternative approaches employ adversarial perturbations
to cause DNN classifiers to misclassify traces. These defenses
incur lower overhead than prior work. Mockingbird [27] ap-
plies perturbations to convert traces into a target. It converts
traces into burst sequences of packets (where a burst is a set of
contiguous packets in one direction), and perturbs these bursts
rather than the raw trace. Because Mockingbird is designed for
Tor traffic, it only consider packet directionality when building
dummy bursts, and ignores packet sizes. Thus, it is unclear
how to adapt it to QUIC traffic: a burst can correspond to many
QUIC packet sequences. Moreover, to compute the perturba-
tion, Mockingbird requires the defender to know the entire
trace in advance, which is infeasible in practice.

Nasr et al. [28] tackle this issue by pre-computing blind
perturbations for unseen traces. Shan et al. improve upon it
with Dolos [26]: it apply adversarial patches or pre-computed
sequences of dummy packets to protect network traces. Unfor-
tunately, we could not run the code by Nasr et al. [29] and Shan
et al. have yet to release their code. Thus, in our work, we resort
to simple randomized dummies in line with WTF-PAD [24].

Other defenses, focus on the application layer. Luo et
al. [30] developed HTTP Obfuscation (HTTPOS), a client-
side defense that modifies features on the TCP and HTTP
layers and uses HTTP pipelining to obfuscate HTTP outgoing
requests. Randomized Pipelining [31] improves this defense
by randomizing the order of the HTTP requests queued in the
pipeline. Subsequent works have shown HTTPOS and Ran-
domized Pipelining to be ineffective in protecting against traffic
analysis attacks [14, 32]. Cherubin et al. [33] developed client-
and server-side defenses, LLaMA and ALPaCA respectively,
tailored towards onion services, i.e., scenarios with low third
party content prevalence, lack of dynamic page content, and
JavaScript disabled. In our work we propose defenses inspired
by ALPaCa, and study its performance in web scenarios where
these assumptions do not hold (see section 7).

3 Adversarial Model

We assume a local passive eavesdropper A located at some
vantage point between an honest client and an honest Web host.
A observes all network traffic passing through this vantage
point and records some portion of it. The goal of the adversary
is to infer the visited domain of HTTPS queries. A does not
possess any decryption keys, and relies only on the size and
timing of the observed packets.

The adversary A observes IP packets. A focuses on Web
traffic and filters out packets that are not TLS or QUIC packets.
Using the appropriate fields in the headers (IP addresses, ports,
QUIC connection IDs), A is able to identify packets that belong
to the same connection. We assume that DNS queries are
done in a private manner (e.g., via DoH [2] and appropriate
padding [9]) and reveal no information to A.

We call A’s observation a collection of flows corresponding
to the network connections generated when the user browses a
single website. Each flow contains [IPsource, [Pdests P1, P25 - - |
where packets p; are (time,size)-tuples (#;,+s;). Negative sizes
indicate packets from the server to the client, and positive sizes
packets in the opposite direction.

Vantage Points. Following prior work [34, 35, 36] we consider
each AS on the path of the client traffic as a realistic adversary.
Each AS’ middlebox, router, or switch that routes traffic from
a client is a potential vantage point for the adversary to collect
this client’s traffic.

In Figure 1, we depict a client located in AS X accessing
two webpages hosted on an IP in AS W. The client traffic is
represented by red lines. If the adversary controls AS X, they
observe all the traffic related to the page visits. This is the
adversary typically considered in the website fingerprinting
literature [5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 19]. If the adversary
controls AS Y or AS Z, however, they would have limited
visibility on the traffic, i.e., they might not observe traffic from
all clients’ visited webpages, or for each observed webpage,
they might only observe a portion of the traffic (e.g., the loading

/Destination
xz o) xz o) host

P, = 0y
ASX . -‘.b-;

Figure 1: An adversary can be on any AS (X, Y, Z, or W) with
vantage points on the client’s traffic path (solid red arrows). The
vantage points (e.g., middleboxes or routers) transmit recorded
data to a location that can perform traffic-analysis at scale
(dotted purple arrows). If the adversary is AS X, vantage points
2 and 3 transmit recorded traffic to location 4.

of some resources). We note that it is possible for an adversary
to control multiple ASes or an IXP (where traffic from multiple
ASes can traverse) [35, 36].

Website Fingerprinting Attack. As in previous work, we im-
plement website fingerpring attacks as a supervised learning
problem. The adversary identifies the IP that contains the do-
mains that they want to target. Then, the adversary enumerates
all domains on that IP, and collects web traffic traces from these
domains. The adversary extracts features from these traces and
uses the feature vectors to train a classifier. Given a new trace,
this classifier predicts to which website it belongs.

We implement the attack using a random forest classifier, a
simple and effective model frequently used in website finger-
printing; and Var-CNN [19] to validate our results against the
state of the art [10]. We use the comprehensive set of features
proposed by Hayes et al. [16] for performing website finger-
printing on Tor since this is a comprehensive set of features
from previous related works. To adapt them to the QUIC case,
we add features about packet size frequencies. Since QUIC’s
maximum payload size (1400 B) is smaller than that of TLS
(16 kB), we compute frequencies of packet sizes up to 16 kB
to encompass both QUIC and TLS traffic.

Closed World. As opposed to the anonymous communications
setting in which the adversary cannot observe the destination
IP of clients request [37], in the QUIC setting the adversary
observes these IP addresses. This information reduces the
anonymity set of the websites visited by the user from the
whole Internet to the websites hosted at a particular IP. Since
the adversary can enumerate the domains hosted in one IP
(e.g., through DNS reverse lookups), we run our analysis in a
closed-world scenario: the adversary can train their classifier
on all the websites hosted on one IP.

60

40 A

20

Density [%]

O_
10° 10" 10° 10°
Anonymity Set Size

Figure 2: Distribution of the cluster sizes of 1.3M domains.

To understand how large these anonymity sets are, we work
with a large CDN provider. We identify 13744979 unique
domain names hosted on the provider in March 2021, hosted
on 593’338 IPs. To get the IP addresses corresponding to
the domains, we run zdns in iterative mode. We query di-
rectly the DNS server of the provider, skipping the local cache.
From the results, we filter out 2641”100 errors (19.2%), 15973
NXDOMAINS (0.1%). Since we are interested in Domain Name
— IP mappings, we ignore 1024'234 CNAME answers (7.5%),
and end up with 1313”159 A/ARAA records.

We group the provider domains by IP address obtaining
593’338 anonymity sets whose distribution, depicted in Fig-
ure 2, coincides with that found by Patil ef al. [38]. 60% of
these domains are hosted on a unique IP address. For these
domains, the adversary does not need to run any traffic analy-
sis: when observing one of these IPs, the adversary is certain
of which domain is being visited. Therefore, we leave these
domains out of scope of our study. We describe in the next
section how we use the rest of the domains from the CDN
provider to build our evaluation datasets.

Adversary’s Resources. We measure the adversary’s cost to
perform a website fingerprinting attack in terms of the band-
width they require to collect and process the traffic traces.
Bandwidth is a proxy for the required storage, as the adversary
needs to store the transmitted information to query the machine
learning model and possibly to retrain it. The computational
cost is also proportional to the bandwidth, as the number and
cost of operations needed to extract features depend on the
length of the traces transmitted.

We assume that vantage points currently do not have the
capability to run machine-learning tasks [39, 40]. They must
mirror (part of) the traffic to a suitable location for analysis
(purple dotted arrows in Figure 1). This location processes
the traffic: it extracts features and performs classification to
identify the page visited by the client.

We study two kind of adversaries. First, an unconstrained ad-
versary who can afford to transmit full traces. In practice, mir-
roring all traffic is prohibitively expensive [41]. Thus, we also
study a constrained adversary that only transmits summaries
of locally computed statistics from sampled data [42, 43].

quic

|l
2 | 1,1|.:|L|| '|||I I

Domains

6 1 —— mixed biﬂ‘

Received data [MB]

Figure 3: Comparison of the incoming total sizes between
mixed and quic. quic was selected to have the same incoming
total sizes as mixed.

4 Datasets

Previous work mainly uses domains from Alexa Top 1M or
Tranco. Using these lists, however, does not account for the
fact that the adversary can observe the destination IPs. In the
QUIC setting, an analysis based on these lists would represent
a scenario in which the client uses a VPN, which is out of the
scope of this work. We therefore create two new datasets.

mixed dataset. Our first dataset represents a current state
of affairs. Currently, browsers learn that a website is QUIC-
capable through an HTTP header, hence, after having estab-
lished a TLS connection. Thus, TLS and QUIC co-exist in
websites. We use the distribution of domains among IPs from
our CDN provider collaborator to identify realistic website sets
that could be targeted by an adversary.

First, we resolve IP addresses and group domains by IPs.
Since the content of duplicate domains is often identical, web-
site fingerprinting attacks often misclassify these websites
among each other. The resulting low accuracy, however, does
not translate into privacy of the browsing history: the website
accessed is the same. We remove duplicate websites to avoid
underestimating performance. We resolve CNAMEs and filter out
copies. We also remove IPs whose hosted domains are mostly
aliases or copies of a single website (e.g., casinol23.com,
cazinol32.com); for this, we use the Jaccard similarity be-
tween the domain names to identify candidates. We manually
examine candidates with a high similarity score and remove
obvious duplicates. We also discard IPs that host similar sets
of domains to support load balancing. Finally, we discard any
IP for which the fraction of websites that return a successful
HTTP response (when queried with HTTPS) is less than 80%.

After all the filtering, we end up with 593’338 M domains.
Of these, only 50k IPs (8.5% of the dataset) host more than 150
domains, with one hosting as many as 56’319 domains. This
leads us to choose a cluster of 150 websites for our experiments.
This size represents the hardest scenario for the adversary
among 91.5% of the IPs served by the CDN provider. Early
in our work, we run experiments with other clusters of similar
size obtaining comparable results.

Table 1: Mean classifier performance on full network traces
for an unconstrained adversary.

Dataset RF Var-CNN
mixed 66.6 (std. dev. 0.5) 57.33
quic (Mar 21) 95.8 (std. dev. 0.4) 92.28
quic (Sept 21) 96.4 (std. dev. 0.2) 94.22

quic dataset. The mixed dataset is TLS-heavy: only 4% (std
1.7%) of its traffic is using QUIC. In our experiments in sec-
tion 5, we observe that in the presence of a TLS/QUIC mixture,
the classifier favors TLS-specific features. This prevents us
from drawing meaningful conclusions regarding the vulnera-
bility of QUIC, or the strength of potential defenses. However,
as QUIC is not widely deployed yet, none of the IPs served
by the CDN provider host a set of domains that primarily use
QUIC for their main page and subresources.

We build quic, a QUIC-dominated dataset, following the
example of Smith et al. [10]. We crawl Alexa 1M [44], Um-
brella 1M [45], and Majestic 1M [46] and we perform HAR
captures' to identify sub-resources and the protocols used by
those websites. We select 150 domains that use QUIC; as the
total size and number of packets have long been identified as a
important and stable metric [21], we select these websites to
match the distribution of total website sizes from the mixed
dataset (we present the distributions in Figure 3). quic has
70% of all traffic over QUIC (std 3%).

Limitation. mixed and quic correspond to an anonymity set at
a specific point in time. We did not evaluate how the anonymity
set change over time. To remain accurate, the adversary must
retrain on new labels if the set changes.

Data Collection We collect PCAP network traces from all the
index pages of the domains of our two datasets. We use Firefox
88.0 isolated on its own network namespace (using netns),
enabling HTTP3, and disabling telemetry and auto-update set-
tings to minimize extraneous traffic. We record 40 samples for
each website. For each sample, we recreate a fresh profile for
Firefox; this ensures that all caches have been removed.

We filter the network traces and only extract well-formed
TLS and QUIC packets. To avoid relying on plaintext markers,
we follow the approach of Smith ez al. [10] and only extract
the time and size of the sent and received packets.

5 Unconstrained Adversary

We start by studying a powerful adversary that can observe
all the traffic associated with a site visit, and who has the
capability to store and process all the traffic that it observes.
Such an adversary could be, for instance AS X in Figure 1, if
it would not have bandwidth or storage constraints.

We run the random forest website fingerprinting attack on
both the mixed and quic datasets. We use 10-fold cross val-

1A copy of the “Network” tab of the Firefox Developer Tools console.

count 6019B (HAA AT AT V7~
count 2675B (A LHTL T T~
count 2341B (AALA T 5
outgoing % (pkts) -
total # of bytes L
incoming # of bytes -
outgoing # of bytes -
incoming % (pkts) -
Atime incoming -
count 3009B -

count 1003B I N —
count 1337B I -
outgoing # of bytes |
total # of bytes I -
incoming # of bytes I E-
I

incoming # (pkts)
inc. order deviation
inc. order average
total # (pkts)
minimum bitrate

T T T T
0.01 0.02 0.03 0.04

Feature importance

0.00

Figure 4: Feature importance for mixed dataset (top) and quic
(bottom). The top three features for mixed (in orange, dashed)
are specific to TLS.

idation; Table 1 shows the result. The classifier yields good
performance compared to random guessing (0.67%), indicating
that a powerful adversary can identify sites with high success.
The performance for mixedis lower than results obtained by
the state-of-the-art [10]. We inspect the sites in this dataset, and
we discover that 22% of the sites are the same, despite having
different domain names. This leads to sites being classified
as one another. When we consider these as correct classifica-
tions, the performance increases to 76%. We also observe that
the classifier’s performance has higher variance against some
websites in the mixed dataset (error bars in Figure 3). These
domains often correspond to unoptimized, arcane sites, un-
like the optimized websites of Alexa Top 1M used in previous
work.

We run a feature analysis on the mixed dataset. The most
important features are TLS-specific (Figure 4, top). Since these
features cannot be protected with a QUIC PADDING frames, in
the remainder of this paper we focus on the quic dataset. When
this dataset is unprotected, the most important features being
the histograms of packets between 1000 B and 1400 B, and
the total transmitted volumes (Figure 4, bottom).

Stability. To validate our results, we collect a second dataset
for quic six months after the initial collection. We observe
the same performance: 96% mean F1 score across 10 cross
validations, with 0.2 standard deviation (see Table 1).

5.1 Protection against a powerful adversary

To understand how a defense could hamper fingerprinting, we
explore defenses that hide local or global features, or both. We

Table 2: quic dataset: Mean classifier performance on de-
fended traces.

Variant F1 Score Std. dev.
undefended 95.8 0.4
hiding all timings 95.5 0.3
hiding individual sizes 93.9 0.4
+ hiding total transmitted sizes 85.0 0.5

ignore practical considerations and assume that there exists
an implementation that perfectly protects these features. We
report the results of the attack in Table 2.

Hiding local features. The top predictive features for quic
are all sized-based (Figure 4, bottom). Thus, our first attempt
aims at hiding individual packet size. We observe that padding
individual packets poorly hides the total transmitted volumes,
which becomes the top features once individual sizes are re-
moved. The attacker performance slightly decreases to 93.9%.
We try to also hide timings, which reduces the adversary’s
performance in one more percentage point.

Hiding global features. Next, we hide individual sizes and
we pad the total transmitted size to the next megabyte, by
increasing the size of all packets. The attacker simply switches
its features to packets orderings (Figure 5), yielding only a
small drop in performance which becomes 92.2%.

Injecting dummies. In order to hide individual packet orderings
we augment the defense with dummy packets. As explained in
section 2, we cannot use existing defenses based on adversarial
perturbation to find the optimal placement of dummies. Instead,
we inject dummy packets at random position in the padded
trace, up to a maximum of 60 seconds after the last real packet
(we observe 60s to be a conservative value; the maximum
duration for loading a website being 33s). All packets and
dummies are padded to the maximum size.

We vary the percentage P of dummies injected in the trace,
and we plot their effect on Fl-score in Figure 6. We see that
dummies only achieve a significant reduction at a sharp in-
crease in cost: to obtain a ~ 10% F1-score drop for the adver-
sary, we must add +50% bandwidth overhead; in addition to
the already large overhead in terms of packets to hide local and
global features (mean cost of 612 kB per trace, with a large
standard deviation: 440 kB).

Take-aways. Our experiments show that despite their high cost,
network-layer defenses reduce the adversary’s performance by,
at most, 3.5 percentage points. The reason is that IPs are telling,
anonymity sets are small, and the classifier is able to pick even
small differences between the traces. We conclude that website
fingerprinting needs to be tackled at the application layer to
hide the total transmitted size and the total number of packets,
which network-layer defenses cannot hide efficiently because
they do not have the total size of objects to pad in advance. We
explore application-layer defenses in section 7.

outgoing pkts 1 |
incoming % (pkts 1 [
out. ordering average 1 1
outgoing # (kts I . -
cumul # of outgoin]f(kts I -
tota. I -
incoming I -
inc. ordering v1at10n I -
inc. ordering average I -
count I -
I T T T
0.00 0.01 0.02 0.03

Feature importance

Figure 5: Feature importance when hiding hiding global fea-
tures (last row of Table 2).

80

70

Attacker F1 score

=]
T T T T T

20 40 60 80 100
Additional percentage of dummies [%)]

o A

Figure 6: quic dataset: Mean classifier performance on traces
with dummies.

6 Constrained Adversary

In section 5 we assumed a powerful adversary who can observe
and process all of a victim’s traffic. We showed that no network-
layer defense can provide protection against this adversary.
However, not all adversaries have such strong capabilities. As
described in section 3, there are on-path adversaries who might
not observe all traffic from a particular client, nor all traffic to a
particular server of interest. Even if the adversary can observe
all traffic, it may not have the capability to process this traffic
or to transmit it to a location suitable for analysis.

We now study whether network-layer defenses could protect
against adversaries that either have limited traffic visibility or
limited processing capabilities. We find that sufficient traffic
visibility is essential for a successful attack; and that using Net-
Flow, a standard technique for efficiently collecting statistics
about network traffic [47, 48], is sufficient for the attack is the
sampling rate is not too low. We also show that padding-based
defenses bring limited benefits, in particular when contrasted
with the performance drop due to the NetFlow sampling rate.

6.1 Limited traffic visibility

We simulate an AS adversary with partial view on the client’s
traffic. In order to identify which parts of the traffic an AS
would see, we first study the routes taken by requests during a
page load. We run HAR captures to identify all the resources
that are queried for every page in our dataset. Then, as in prior
work [49], we use traceroutes to record the path taken by all

100 4 I
g 75 -
il
]
% 50 7
:
n]
= LI
O_ | T

AS

Figure 7: Distribution of webpages seen by each AS. Only
three ASes (client’s AS, Google, Cloudflare) can observe traffic
from all the pages. Most ASes observe less than 10% of pages.

— 100 +

=

)

& 75 4

<

g 50 7

L

g 25 s l

=

!2% 0 III II I IIIiiiiilll.llllil.-------
AS

Figure 8: Distribution of routes per webpage seen by each AS.
Only three ASes (client’s AS, OVHcloud, Google) observe
more than 50% of the traffic per site.

the resource requests and the ASs encountered on each route.
We set traIXroute [50] to use scamper (configured with the
Paris traceroute technique).

To capture the view of the adversary, we use the route in-
formation to filter our collected network traces, keeping only
the packets associated to the resources visible from the ad-
versarial AS vantage point. We filter the PCAPs by removing
TLS/QUIC connections that do not correspond to the resources
of interest. This filtering is based both on the destination IP
address and the SNI, when it exists.

Our results below are from traceroutes collected from the
same location as the quic dataset (in France). We also ran
traceroutes from other vantage points (in Germany, UK, Singa-
pore), and observed the same trends as described below. The
additional experiments are described in Appendix A.

Results. We observe a total of 974 routes in the quic dataset.
The distribution of routes per webpage is shown in the ap-
pendix. As done in [49], we discard route hops that do not have
IP or AS information (asterisks in the traceroute). To avoid
introducing inaccuracy in our analysis, we do not attempt to fill
these gaps in routes via stitching as performed in [49]. Thus,
our results provide a lower bound on the amount of traffic that
an AS adversary sees.

Figure 7 shows how many webpages are seen by each AS;
we consider the webpage is seen if the AS sees any traffic
associated with this webpage visits (including its subresources).
There are three ASes that observe traffic from more than 80%

Table 3: Mean classifier performance on different AS views.

AS Name # Pages F1 Score
15169 Google, LLC 67 89.5
13335 Cloudflare, Inc 50 92.9
3356 LEVELS3 2 81.7
32934 Facebook, Inc 2 92.3
45899 VNPT-AS-VN 1 100.0
20940 Akamai Technologies 1 100.0
62713 PubMatic, Inc 1 100.0

of webpages: one from Google, one from Cloudflare, and the
AS where our client is located. The majority of the ASes,
however, see only a small proportion of the sites (less than
10%). If any of these ASes were to be the adversary, they
would not be able to fingerprint traffic from most websites
hosted by this IP.

Seeing any traffic is a necessary condition to fingerprint but,
to have a high attack success, an adversary also must observe a
sufficient proportion a webpage traffic. For every web page an
AS sees, we study what portion of this page they can observe
(see Figure 8). The source AS sees 100% of the traffic. Another
AS, 4367 (belonging to OVHcloud), sees 100% of page traffic
as well, although the number of pages whose traffic it can
observe is low. The Google AS is the second highest. It sees ~
70% of the routes for each page. All other ASes see less than
50% of the routes associated with a page.

We show in Table 3 the classifier performance if each of
these ASes was the adversary. Few ASes have a substantial
view of the client connections, e.g., Google (67%) or Cloudflare
(50%). On the page loads they observe, these entities can fin-
gerprint the traffic with high F1 score. Adversaries that observe
little traffic, however, cannot achieve significant performance
(less than 6%). We conclude that, in order to successfully fin-
gerprint, an AS adversary needs to observe a large proportion
of the traffic, either by being the client’s AS or by providing
sub-resources on websites.

Inexpensive fingerprinting due to resource centralization.
In subsection 7.1, we show that most websites query resources
from a server hosted by Google. From the (incomplete) AS
information on the network level, we found that at least 67
webpages were seen by Google. When looking at the HAR
capture, we observe that 125 websites in quic (83%) request
a resource from a Google-owned domain. Furthermore, even
when the same set of resources are loaded, they are not loaded
at the same time (with respect to the time of query of the home
page) or in the same order.

This centralization of resources could be used by an adver-
sary to perform traffic analysis at a fraction of the typical cost:
instead of recording all traffic, an adversary can use the tim-
ings of ClientHello’s to Google IPs to efficiently fingerprint
the traffic. To validate this hypothesis, instead of recording
all traffic and deriving features from these traces, we only

Table 4: Mean classifier performance and median storage re-
quired per sample on traces filtered by connections to Google
services. The last two rows use 125 samples.

Variant F1 score (Std dev) Size [KB]
Baseline (Full Traffic) 95.8 (0.4) 312.4
Full traffic to Google 78.4 (0.7) 112.1
ClientHello’s to Google 66.1 (0.4) 0.1
duratlon P25 I -
duration p25 (outgoi gg I -
duration p |
duration p50 (outgoing) I
duration -
duration p7 5 (outgom% —
duration p o
Atime p75 g)utgom% -
time p —
Atime mean -
0.00 0.02 0.04

Feature importance

Figure 9: Feature importance for classifying websites based on
the timings of their requests to Google services.

record the traffic towards to Google services by filtering the
network traces for which the destination IP (or the SNI) be-
longs to Google. If this field is not present in the packet, we
perform a reverse-mapping with the destination IP to confirm
the destination. To list domains belonging to Google, we get the
requested URLSs using our HAR capture, and we check the own-
ership using tracker-radar [51]. In our attack, we use the follow-
ing four Google-owned domains: google.com, gstatic.com,
youtube.com, doubleclick.com, ggpht.com.

Finally, we extract the sending times of the packets contain-
ing a ClientHello record to these Google IPs and domains.
For quic, this represents 7.6 floating-point values on average
per loading of a website, with a maximum of 27 values. The
size of the fingerprint is between 61B and 216B per loading
of a website; in contrast, the mean .pcap size is 112 kB for the
traffic towards Google, and 312 kB for all traffic.

Results. Table 4 shows that when using only the timing of
requests to Google, the adversary achieves 77.9% F1 score for
the 125 websites that use some Google resource. This can be
achieved with only ~ 61 B per connection, a saving of four to
five orders of magnitude compared to recording a full network
trace. The feature analysis confirms that the timings between
sub-resources is what helps the attacker in this case (Figure 9).
This experiment highlights two current practices that facilitate
fingerprinting: resources are centralized in a few providers,
and it is easy to observe connections to these services (e.g., by
logging the traffic to four domains/IPs); and websites query
these resources in a unique way, which enables fingerprinting.

Take-aways. A few key large ASes (e.g., Google, Cloudflare)
can successfully run traffic-analysis attacks; yet, these entities
are CDNSs, and do not need to run such attacks: they terminate
the encrypted connection and can observe the source page (e.g.,

Table 5: Mean classifier performance and median storage cost
per sample for Sampled NetFlow, quic.

Sampling F1 Score Size [kB]
Full traces 95.8 3124
NetFlow 100% 90.5 25.9
NetFlow 10% 66.4 3.0
NetFlow 1% 41.7 0.9
NetFlow 0.1% 16.8 04

via Referer field). At the same time, other ASes observe too
few packets to perform traffic analysis. In both cases, a defense
against traffic analysis does not seem useful.

Interestingly, the fact that resources are centralized on a few
CDNs can enable other entities to perform fingerprinting at a
fraction of the usual cost: e.g., an ISP can use the Google-filter
to save bandwidth by 3 to 4 orders of magnitude (compared to
running the attack on all traffic) and still efficiently fingerprint.

6.2 Limited processing power

Fingerprinting requires adversaries to have storage and compu-
tation capabilities, which middleboxes might not have. Also,
mirroring the traffic (e.g., to a location suitable for analysis) is
expensive: typical network monitoring solutions only record
aggregate statistics over sampled traffic [48]. Common tools
for network sampling include NetFlow and sFlow [35]. More
efficient techniques have been proposed in academic papers
(e.g., sketching [52, 53] or skampling [54]). To the best of our
knowledge, these techniques are not yet widely deployed. We
therefore focus on NetFlow, which is widely deployed on the
Internet.

To investigate whether NetFlow statistics are sufficient to
perform traffic-analysis attacks, we simulate Sampled NetFlow,
a variation of NetFlow used in high-speed links where pack-
ets are first sampled in a deterministic fashion (1 out of every
N packets) and flow statistics are computed on the sampled
packets. First, we down-sample the PCAPs uniformly to the
desired sampling rate, and we create NetFlow summaries from
the PCAPs using nfpcapd and nfdump. We experiment with
various sampling rates: 100%, 10%, 1% or 0.1% (common sam-
pling rates range from 50% to 0.1% [43]). Second, we adapt the
features used by our model to NetFlow summaries rather than
packets. Our adaptation is straightforward: we consider a flow
as a single packet whose size is the sum of all packets in a flow,
and inter-packet timings become inter-flow timings. The num-
ber of packets per flow is recorded, but individual packet sizes,
timings and directions are lost (they are not recorded by Net-
Flow). There are two flows per connection. We acknowledge
there could be better, tailored features and thus our evaluation
only provides a lower-bound on the attacker performance.

Results. We show the mean classifier performance on the Net-
Flow summaries in Table 5. Moving from full packet data to
flow summaries leads to a reduction in the adversary’s perfor-

. total # of bytes
incoming # of bytes
incoming # (pkts)

X Atime
Atime p7b
duration p25
_duration
time mean
std dev Atime

I
0.00

total #f(gkts)
b

T T
0.02 0.04
Feature importance

Figure 10: Feature importance for classifying NetFlow with
1% packet sampling rate.
Table 6: Mean attacker performance on defended NetFlow,

quic.
Sampling F1 Score
NetFlow 100% 53.1
NetFlow 10% 33.1
NetFlow 1% 21.6
NetFlow 0.1% 8.6

mance, i.e., there is a trade-off between the adversary’s success
and their capabilities. The performance drops significantly
with the sampling rate (29 percentage points lost when 10%
of packets are sampled). All of these F1-scores are still much
higher than random guessing (F1-score=0.6%).

Defenses. Regardless of the sampling rate, the most important
features when using NetFlow are the total number of bytes and
packets (Figure 10). We explore a costly defense that hides
both per-flow metrics and overall statistics about the number
of bytes and packets exchanged. When considering full traces
the maximum transmitted size is 22 MB, and the maximum
number of packets is 25K. We hide global statistics by padding
the total transmitted bytes and the number of packets to these
maximum values. For other sampling rates, the maximums
diminishes linearly with the sampling rate, and we apply the
same reduction in the padding function. This padding is added
uniformly to all the flows of one sample.

Results & take-aways. These defenses do reduce the attacker
performance, yet at an impractical cost; the median cost is ~ 39
MB per trace (see Table 6). As seen in section 5, the adversary
adapts the available features, such as flow orderings (11) or
timings (Figure 12). We also note that although the defended
traces have a low F1 score (e.g., 21.6 at 1% sampling), most of
the gain in privacy compared to the standard setting (95.8%)
comes from the sampling (—54.1 percentage point) rather than
the defense (—20.1).

7 Application-Layer Defenses

Our results in section 5 and 6 confirm, for QUIC, the findings
of Dyer et al. [21] for HTTP over encrypted tunnels: network-

cum. sum out. pkts (std dev) I E—
~ cumul # of outgoing pkts I -
incoming ordering deviation I -

incoming ordering average 1
outgoing ordering average I -
S ev of bitrate I

minimum bitrate I -

duration I -

duration p50 I -

duration p75 I -

I T T
0.00 0.01 0.02

Feature importance

Figure 11: Feature importance for classifying defended Net-
Flow with 100% packet sampling rate.

max Atime I N -
Atime p75 I I -
duration 1
std dev. Atime 1
duration €75 T 3
time_p100 1
. . duration 11)25 I I -
time_incoming_p100 I -
. duration p50 I
time_incoming_p75 I -
I T T T T
0.00 0.01 0.02 0.03 0.04

Feature importance

Figure 12: Feature importance for classifying defended Net-
Flow with 1% packet sampling rate.

layer defenses have limited ability to hide global traffic patterns.
To efficiently hide global traffic patterns (e.g., total incoming
size), a defense needs to know in advance the size of objects.
The only way to know in advance the size of objects is to know
the resources, i.e., to have the defense at the application layer.

7.1 Web page structure in the quic dataset

To design an application-layer defense, we need to understand
how websites use resources. To study the websites in the quic
dataset, we use OpenWPM [55], which logs the HTTP requests
that occurred during the page load. Unlike HAR captures,
OpenWPM also records the originator of a request. We collect
page structures by crawling the pages in quic with OpenWPM
(v0.17.0) and Firefox five consecutive times.

Resource dynamism. We first study how dynamic the pages in
our dataset are, i.e., how pages vary across crawls. Dynamism
influences how easy it is to protect a page. The less dynamic
pages are, the easier it is to protect them as one can select
defense parameters tailored to the static resources. If pages vary
overnight, defenses can only be configured to fit the average
case.

Out of the 150 websites in quic, 149 were successfully vis-
ited across all crawls. For these pages, we calculate the propor-
tion of resources that remain static across the runs. Sometimes,
even if the resources fetched are the same, the URL parame-
ters may vary. Hence, we strip the URL parameters, and plot
the distribution of static resources in Figure 13a. The mean

proportion of static resources is 88.25% (Std: 22.46%) and
the median is 100%. This indicates that there very little dy-
namism in our dataset. The majority of the resources remain
static across runs. We note, however, that our measurements
are taken over a short period of time, and dynamism could
grow if webpages are observed over a longer time period.

Resource ownership. Next, we study the ownership, i.e.,
which entity could modify the resources, of these resources.
Understanding the variety of owners provides an idea of how
much coordination is required among these owners to protect
a page from website fingerprinting. We define ownership in
terms of whether a resource is first party (shares the same
eTLD+1 as the page) or third party (has a different eTLD+1
as the page). For example, on the page www.example.com,
a resource img.example.com would be first-party and a re-
source external.com would be third-party. Using domains as
a proxy for ownership is not perfectly accurate: for example,
content for facebook.com can be served from fbcdn.net,
and both domains come under the control of Facebook, but the
latter would be identified as a third party. We tried to use ser-
vices that provide entity-domain mappings [51] to validate our
inference. Unfortunately, they do not have relevant ownership
information for almost half of the resources in our dataset. So,
we stick to domains to determine party for our analysis.

Figure 13b shows the proportion of first-party resources over
the pages in our dataset. We observe that a majority of pages
have a large proportion of first-party resources (Mean 61.18%,
Std 31.61%, Median 66.67%). At the same time, the proportion
of first-party resources can be as low as 3.92%, likely due to
page content not being self-hosted. We observe that there are,
on average, 5.95 unique third party domains on a page (Std:
7.64, Median: 3), with the number of domains going up to 44
for one of the pages in the set. This indicates that implement-
ing a server-side defense is not straightforward since it would
require coordination among multiple third parties. Visual in-
spection of the third-party domains shows a large number
of domains commonly associated with Google. We map the
domains to their owning entities [51] to measure Google’s
prevalence ([51] contains mappings for Google’s domains).
Figure 13c shows the proportion of Google resources per page.
24% of the pages have more than half their resources served
by Google. Google’s widespread prevalence hints that any
application layer defense would need their cooperation to be
successful.

7.2 Application-layer defense strategies

Now that we have an overview on the structure of webpages
and the number of entities involved, we proceed to design
defenses.

All parties must protect resources. As in the QUIC setting the
adversary can observe IPs, the adversary can filter resources
coming from different parties and perform the attack on traffic
from different origins. Given the large proportion of third-party

10

Table 7: Mean classifier performance on traces filtered by 15/
3" party and Google CDN, quic.

Variant F1 Score Std. dev
All traffic 0.937 0.008
Only traffic to/from 1% parties 0.955 0.004
Only traffic to/from 3™ parties 0.915 0.005
Only traffic to/from Google CDN 0914 0.006

resources on websites, before diving into designing defenses,
we first study whether these third parties need to be involved
or it is sufficient that the first party protects resources.

We filter the resources by party to simulate cases in which ei-
ther the first party, third parties, and the adversary only attacks
the remaining undefended traffic. First-party defenses repre-
sent a scenario where webpages protect their content using
some defense, but third-parties do not cooperate. Third-party
defenses represent a scenario where third parties such as CDNSs,
which host a large number of resources, decide to implement
a defense, but smaller first parties do not. We also study the
case in which the adversary focuses on dominant third parties,
as some CDNs represent a large portion of resources. We pick
Google as dominant third party as 83% of the websites in quic
query Google resources (see subsection 7.1).

Table 7 shows that, in all of these scenarios, the attacker can
achieve a high performance just analyzing the partial, unde-
fended traces. Thus, we conclude that for any defense to be
effective, all parties involved in serving content must be coor-
dinated and actively participate on the protection of resources.

Once it is clear that all parties must participate, we proceed
to design defenses. We try four different strategies to protect
local and global features.

1. Protecting local features with padding. We design a
padding function padesources to hide individual queries and
resources sizes. Such a defense must be implemented both on
the client and the server.

To configure this padding function, we use (1) the distri-
bution of request sizes in the targeted set of websites and (2)
one parameter N, which defines how many different sizes the
defense allows for. Given the distribution of request sizes, we
design the padding function to split the resources sizes into N
groups of equal density. For N =1, all resources are padded
to the max resource size in quic. For N = 2, half of the re-
sources are padded to the median size, half to the max size.
Choosing a small N increases privacy: more resources will be
padded to the same size and be indistinguishable. A small N
also increases bandwidth usage.

2. Protecting global features with padding. Padding only
individual packets’ size cannot protect the overall transmit-
ted volume. We design a padding function padiotal size to pad
the total incoming and outgoing traffic sizes. To evaluate the
best case defense, we assume the ideal scenario in which the

& &

. .

£ 1001 — £ 100
ks B

) 5]

¢ 8

s 05 0 75 100 £ O
Z,] 0 D . 0

Common resources across runs [%)

(a)

First party resources [%)]

(b)

100

Number of pages

50 100 25 50 5

Google resources [%)]

©

Figure 13: Resource dynamism and ownership for pages in the quic dataset. Figure a is the distribution of the proportion of
resources that remain static across 5 runs. The majority of resources remain constant across runs, indicating low page dynamism.
Figure b shows the proportion of first party resources. 18% of the pages have less than 20% of first-party resources. Figure c is
the proportion of Google third party resources. 24% of the pages have more than half their resources served by Google.

padding effort is split evenly across all the parties queried on
one webpage. This way, the adversary does not gain an ad-
vantage by dropping the traces from one party in particular.
This strategy assumes the existence of a mechanism by which
clients can ask third parties for a particular amount of padding
per resource; how to design such a mechanism is outside the
scope of this work.

The design of padiptal size 1S similar to padresources- 1t has
one parameter, N, which defines how many total incoming
and outgoing traffic sizes are allowed. We first compute the
maximum total incoming and outgoing traffic in our target
dataset, quic. Across all websites, the maximum total size of
queries in one website is 102 kB and the median is 14.4 kB;
and the maximum total size of all downloaded resources is
8.19 MB, with median 750 kB. To apply the defense, we split
the total incoming/outgoing sizes into N groups of traces with
equal density. For instance, when N = 1, there is only one group
of maximum size. Thus, we pad all websites’ outgoing traffic
would be padded to 102 kB, and the incoming traffic to 8.19
MB. For N =2, the groups would correspond to the median and
to the maximum total incoming and outgoing traffic. For N =3,
the groups would correspond to tertiles of the distribution, for
N =4 to quartiles, and so forth. We allocate every website
to the group that is closest to its original total incoming and
outgoing size, and we spread the padding evenly across all
queries and resources of that website.

3. Protecting global features with dummies. An orthogonal,
popular approach to hiding the total size is injecting dummy
traffic in addition to padding individual packets [24]. Unlike
in Tor, where dummies are indistinguishable from real cells
due to the standard cell size, in QUIC, care must be taken that
dummies’ sizes do not enable the adversary to filter them. To
evaluate the defense in ideal circumstances, we assume the
existence of a dataset that contains the most popular queries
and resources across all web pages of (in our case in the quic
dataset). Then, we build dummies replicating the structure of
those popular queries. This ensures that the queries are hard to
filter for an adversary.

In our experiments, we select popular resources from Google
(fonts, analytics, static assets). When a webpage is loaded, we

11

choose a number of resources to inject. These resources can
themselves trigger additional queries. The time at which the
resource is injected is chosen uniformly at random over the
duration of the connection, such that the adversary cannot use
timing to identify and filter out dummies.

7.3 Application-layer defenses evaluation

Since we are interested in evaluating defenses at the application
layer, we would like to directly evaluate their effectiveness by
measuring how they perturb features at the application layer.
The results by Hentgen [56], show that this is possible. Hentgen
demonstrates that evaluating a defense at the application layer
gives an upper bound on the capabilities of a network-layer
adversary with respect to a set of features. This is because
measuring resources features at the network layer is effectively
a noisy version of the resources at the application layer, For
instance, the number of incoming packets and the total size
of incoming QUIC packets are a noisy version of the actual
size of the downloaded resources, and the total duration of
the connection is a noisy version of the total amount of bytes
downloaded. Even features such as inter-packet timings are
a noisy representation of the structure of the web page: they
represent number and timing of resource loads.

Metrics. We use two different metrics to evaluate the attacker
success. As in previous sections, we use the performance of
the classifier. Since Var-CNN [19] relies on packet orderings
and timings, but does not consider packet sizes, we limit our
evaluation to the random forest classifier.

We study the attacker’s performance in three scenarios: un-
defended traces with all features, undefended traces without
timings, and defended traces without timings. The latter is a
good estimate of the attacker performance (even with timings),
as our baseline analysis shows (see subsubsection 7.3.1).

Dataset and features. For the undefended baseline, we
use the HAR captures of quic; their format is a list
of [trequest’ Sizerequest’tresponse’Sizeresponse]~ We derive the k-
Fingerprinting features from these traces.

Our padding and dummy-injection defenses would affect
the timing of packets. In practice, however, it is difficult to

g @
= 107 1 3
+ wn
2 0.9 *
o =
£ inl &
2 10" A 4
i - 0.8 E
O 1 1 1

20
Number of sizes N

40

Figure 14: Number of allowed sizes, N, in padresources VETSUs
attacker performance and median bandwidth cost per subre-
quest.

count 5684B

1ncom1n bytes
of bytes
1nc0m1ng bytes
outgomg bytes
pkts
outg om g
out gomg f tes

incomin ts
Atlm% ﬁéut(gomg

0.00

T T
0.10 0.15

T
0.05
Feature importance

Figure 15: Feature importance with 3 padding sizes: 5.58 kB,
21 kB, 3.6 MB.

predict or measure how these changes would affect our traffic
captures. Attempting to copy all websites of quic on a server
we control to simulate the changes is insufficient, as we would
not be able to simulate actions from third parties.

Fortunately, previous work and our own experiments (see
Figure 19) show that timings are not among the most impor-
tant features. While they can help, they are less stable (and
hence useful) than sizes. This is corroborated in Hentgen’s
study, which shows that even without timings the analysis is
still an upper bound over the network layer [56] Thus, when
applying defenses, we discard timings and use with a list of
[Sizerequest, Sizeresponse] .

7.3.1 Defense Evaluation

Baseline on undefended traffic. When attacking full HARs,
the adversary obtains very good performance (93% F1 score).
When removing timing information, we obtain the same F1
score, confirming that timings are not so important in our sce-
nario. All top features are based on sizes, bytes_outgoing
being the most important features by a slight margin over
bytes_incoming (bytes_total is the sum of the two).

Protecting local features with padding. We vary N (the
number of allowed sizes) and evaluate the effectiveness of
Padresources- We pad the resources, run the attack, and plot the
median cost and the attacker F1 score in Figure 14. Only large
amounts of padding (small N) have an effect on the attacker

12

g ©
2100 4 S
2 09 &
g incoming by
g 102 _ _ outgoing g
= » 08 [S)]
Zo | W 2
Z 04, | SLLLLLLITT VT PSPPI | <
~ 0 25 50 75 100

Number of sizes N

Figure 16: Number of allowed sizes N in padioa] size VETSUS at-
tacker performance and median bandwidth cost per subrequest.

accuracy. For instance, padding with 3 large sizes (5.58 kB,
21 kB, 3.6 MB) decreases the accuracy adversary by 6% and
incurs a median overhead of 9 kB per resource. This ineffec-
tiveness stems from the fact that the adversary still has access
to the number of requests and overall volume (see Figure 15),
which are sufficient for the attack. The total sizes are too differ-
ent to be efficiently hidden through the padding of individual
resources.

Protecting global features with padding. We evaluate the
effectiveness of padding the sum of requests and the sum of
incoming resources independently using padiotal size- We plot
the attacker F1 score and the median cost in Figure 16.

We observe that padding the total size again does not hamper
the attack: for instance, to drop the adversary’s accuracy by
10 percentage points, the defense incurs a median cost of 5.7
kB per request (outgoing traffic) and 300 kB per resource
(incoming traffic). In the best case, it reduces the attacker’s
accuracy by 16 percentage point, with a median cost of 109 kB
per request and 8.16 MB per resource.

Injecting dummies. We plot in Figure 17 the attacker F1 score
for a varying number of dummies. This defense is more effec-
tive than the previous strategies. For instance, the parametriza-
tion (p =0.5,M = 10), which injects on average 5 dummy
requests, decreases the attacker performance from 93% to 54%
F1 score, at a median cost of 137 kB per loading of a web page.
We observe that setting p to 0.5 hinders the attacker perfor-
mance more than the quantity of dummies (M): on average,
the two parametrizations (p =0.5,M =10) and (p=1,M =5)
inject 5 sequence of queries to a CDN; the former reduces the
attacker adversary to 0.54 F1 score, and the latter to 0.43.

Limitations. In contrast to a network-layer defense, an
application-layer defense interacts with HTTP traffic and ap-
plications; it is thus more complex to design a defense which
has a minimal impact on existing systems (e.g., client caching,
pipelining of resources and other browser&website optimiza-
tions). Compared to a network-layer defense, padding and
dummy requests incur an increased computation and band-
width cost. On the client side, dummy requests affect how real
requests are pipelined and might delay them.

6 1 ®
= .S
= 44 F0.75 *
& =
g. e - 0.50 §
=2)
27 <
8 F0.25 =
© 0+ <

10 20
Number of dummy requests

30

Figure 17: Attacker performance and cost when varying the
number of dummies.

8 Discussion and Recommendations

Our work highlights the difficulties in developing an effective
website fingerprinting defense for the Web. We carried out a
comprehensive study of the ecosystem in which defenses are
to be deployed, and provided evidence for the fundamental
incompatibilities between today’s Web communications and
user privacy.

Network-layer challenges. First, we confirm that previous
results which point out that network-layer defenses are not
effective against website fingerprinting [21] also apply when
the transport protocol changes from TCP to QUIC. The main
problem stems notably from the differences in the total sizes of
websites and result on identifying features [16, 57]. Hiding the
total size is hard at the network layer, where the size of objects
is not known in advance. Thus, without coordination with
the application layer, a generic, application-agnostic defense
using the QUIC’s PADDING frame is an inadequate mitigation
against traffic-analysis attacks. Effective mitigations require
application involvement, either in the application code or as
part of the browser’s functionalities.

App-layer challenges & Next steps. While defenses at the ap-
plication layer can obtain better protection at a smaller cost, our
investigation shows that the current Web development practices
hinder the effective deployment of any defense. For instance, a
straightforward defense would be to pad the total size of web-
sites to standard set of sizes. However, websites use resources
hosted on different servers, and defenses must cover all re-
sources to be effective (see subsection 7.2). The widespread
use of third party resources means that achieving full coverage
requires coordination between many different entities, which
seems unlikely to happen organically. Without coordination
between first and third parties, Web-oriented standard bodies
(e.g., W3C) and browser vendors could develop standard mech-
anisms for normalizing how third-party resources are requested
and served to reduce the threat of traffic analysis. For instance,
the definition of standard sizes for third-party served resources,
and methods to request these resources such that all websites
use the same order.

A solution to avoid coordination would be to rethink the
trend of creating web development resources as a service, and

13

go back to having first parties hosting and serving the resources.
In this spirit, initiatives such as Web Bundles [58] (despite rais-
ing other privacy concerns) would remove the need for coordi-
nating between third parties, simplifying the implementation
of defenses, and removing vantage points.

IPs & Anonymity set sizes. In the QUIC setting, the adversary
is largely helped by the IPs addresses; they can be used to
turn the website fingerprinting problem into a closed-world
classification problem, to dissect traffic based on first and third
parties, and to link together a client’s packets.

To address the easy linking of packets, clients could use
techniques such as MIMIQ [59] to leverage QUIC’s connection
migration feature to change a their IP address; or Near-Path
NAT [60] or MASQUE [61] to completely hide their IPs. This
would force the adversary to probabilistically stitch packets
together to form traces. If the source/destination IP/port are
not identifying one client, simply rotating QUIC’s connection
ID might also prevent the adversary from linking together one
client’s packets.

To address the ease of separating traffic, CDNs that also host
websites (e.g., Cloudflare) could proxy the traffic to third par-
ties, such that all traffic is served from a single IP. Finally, the
closed-world size could be increased by co-hosting multiple
websites on one server, or making a larger number of web-
sites available behind load balancers; or even moved to open
world if all web traffic would be downloaded via anonymous
communication networks (e.g., Tor [37]) or VPNs.

References

[1] TLS Encrypted Client Hello. https://datatracke
r.ietf.org/doc/html/draft-ietf-tls-esni-12.
Accessed: 2021-07-05.

[2] DNS Queries over HTTPS (DoH). https://datatrac
ker.ietf.org/doc/html/rfc8484. Accessed: 2021-

07-05.

[3] Sudheesh Singanamalla, Suphanat Chunhapanya, Marek
Vavru$a, Tanya Verma, Peter Wu, Marwan Fayed, Kurtis
Heimerl, Nick Sullivan, and Christopher Wood. Obliv-
ious DNS over HTTPS (ODoH): A Practical Privacy

Enhancement to DNS. PETS, 2021.

[4] Specification for DNS over Transport Layer Security
(TLS). https://datatracker.ietf.org/doc/html/

rfc7858. Accessed: 2021-07-05.

[5] Heyning Cheng and Ron Avnur. Traffic analysis of SSL
encrypted web browsing. Project paper, University of

Berkeley, 1998.
[6]

Andrew Hintz. Fingerprinting websites using traffic anal-
ysis. In International workshop on privacy enhancing

technologies, pages 171-178. Springer, 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-12
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-12
https://datatracker.ietf.org/doc/html/rfc8484
https://datatracker.ietf.org/doc/html/rfc8484
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7858

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Dominik Herrmann, Rolf Wendolsky, and Hannes Fed-
errath. Website fingerprinting: attacking popular privacy
enhancing technologies with the multinomial naive-bayes
classifier. In Proceedings of the 2009 ACM workshop on
Cloud computing security, pages 31-42, 2009.

Brad Miller, Ling Huang, Anthony D Joseph, and J Doug
Tygar. I know why you went to the clinic: Risks and
realization of https traffic analysis. In International Sym-
posium on Privacy Enhancing Technologies Symposium,
pages 143-163. Springer, 2014.

Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-
Rodriguez, and Carmela Troncoso. Encrypted DNS—
Privacy? A traffic analysis perspective. In NDSS, 2020.

Jean-Pierre Smith, Prateek Mittal, and Adrian Perrig.
Website Fingerprinting in the Age of QUIC. PETS,
2021(2):48-69, 2021.

RFC 9000, Section 19.1 PADDING Frames.
https://datatracker.ietf.org/doc/html/rf
c9000#section-19.1. Accessed: 2021-08-12.

RFC 9000. https://datatracker.ietf.org/doc/h
tml/rfc9000. Accessed: 2021-08-12.

Usage statistics of HTTP/3 for websites. https://w3t
echs.com/technologies/details/ce-http3. Ac-
cessed: 2021-10-03.

Tao Wang, Xiang Cai, Rishab Nithyanand, Rob John-
son, and Ian Goldberg. Effective attacks and provable
defenses for website fingerprinting. In 23rd USENIX Se-
curity Symposium (USENIX Security 14), pages 143-157,
2014.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp,
Thomas Engel, Andreas Zinnen, Martin Henze, and Klaus
Wehrle. Website Fingerprinting at Internet Scale. In
NDSS, 2016.

Jamie Hayes and George Danezis. k-fingerprinting: A
Robust Scalable Website Fingerprinting Technique. In
25th USENIX Security Symposium (USENIX Security 16),
pages 1187-1203, Austin, TX, August 2016. USENIX
Association.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom
Van Goethem, and Wouter Joosen. Automated Website
Fingerprinting through Deep Learning. In NDSS, 2018.

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew
Wright. Deep fingerprinting: Undermining website fin-
gerprinting defenses with deep learning. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1928—-1943, 2018.

14

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A data-efficient website fingerprinting
attack based on deep learning. PETS, 2019.

Payap Sirinam, Nate Mathews, Mohammad Saidur Rah-
man, and Matthew Wright. Triplet fingerprinting: More
practical and portable website fingerprinting with n-shot
learning. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1131-1148, 2019.

Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In 2012
IEEE symposium on security and privacy, pages 332-346.
IEEE, 2012.

Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-
BuFLO: A congestion sensitive website fingerprinting
defense. In Proceedings of the 13th Workshop on Privacy
in the Electronic Society, pages 121-130, 2014.

Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A systematic approach to develop-
ing and evaluating website fingerprinting defenses. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 227-238,
2014.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz,
and Matthew Wright. Toward an efficient website finger-
printing defense. In European Symposium on Research
in Computer Security, pages 27-46. Springer, 2016.

Jiajun Gong and Tao Wang. Zero-delay lightweight de-
fenses against website fingerprinting. In 29th USENIX
Security Symposium (USENIX Security 20), pages 717—
734, 2020.

Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and
Ben Y Zhao. A Real-time Defense against Website Fin-
gerprinting Attacks. In ACM Workshop on Artificial
Intelligence and Security (AlSec’21), 2021.

Mohammad Saidur Rahman, Mohsen Imani, Nate Math-
ews, and Matthew Wright. Mockingbird: Defending
against deep-learning-based website fingerprinting at-
tacks with adversarial traces. IEEE Transactions on In-
formation Forensics and Security, 16:1594—-1609, 2020.

Milad Nasr, Alireza Bahramali, and Amir Houmansadr.
Defeating DNN-Based Traffic Analysis Systems in Real-
Time With Blind Adversarial Perturbations. In 30th
USENIX Security Symposium (USENIX Security 21),
2021.

BLANKET. https://github.com/SPIN-UMass/BLA
NKET. Accessed: 2021-10-08.

https://datatracker.ietf.org/doc/html/rfc9000#section-19.1
https://datatracker.ietf.org/doc/html/rfc9000#section-19.1
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc9000
https://w3techs.com/technologies/details/ce-http3
https://w3techs.com/technologies/details/ce-http3
https://github.com/SPIN-UMass/BLANKET
https://github.com/SPIN-UMass/BLANKET

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Xiapu Luo, Peng Zhou, Edmond WW Chan, Wenke Lee,
Rocky KC Chang, Roberto Perdisci, et al. HTTPOS: Seal-
ing Information Leaks with Browser-side Obfuscation of
Encrypted Flows. In NDSS, 2011.

Mike Perry. Experimental Defense for Website Traffic
Fin- gerprinting. https://blog.torproject.org/bl
og/experimental-defense-website-traffic-fin
gerprinting. Accessed: 2021-10-03.

Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: Website fingerprint-
ing attacks and defenses. In Proceedings of the 2012
ACM conference on Computer and communications secu-

rity, pages 605-616, 2012.

Giovanni Cherubin, Jamie Hayes, and Marc Judrez. Web-
site Fingerprinting Defenses at the Application Layer.
Proc. Priv. Enhancing Technol., 2017(2):186-203, 2017.

Nick Feamster and Roger Dingledine. Location diversity
in anonymity networks. In Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, pages 66—

76, 2004.

Steven J Murdoch and Piotr Zielifiski. Sampled traffic
analysis by internet-exchange-level adversaries. In Inter-

national workshop on privacy enhancing technologies,
pages 167-183. Springer, 2007.

Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr,
and Paul Syverson. Users get routed: Traffic correlation
on Tor by realistic adversaries. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 337-348, 2013.

Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical re-
port, Naval Research Lab Washington DC, 2004.

Simran Patil and Nikita Borisov. What can you learn
from an IP? In Proceedings of the Applied Networking
Research Workshop, pages 45-51, 2019.

Jiasong Bai, Menghao Zhang, Guanyu Li, Chang Liu,
Mingwei Xu, and Hongxin Hu. FastFE: Accelerating
ml-based traffic analysis with programmable switches. In
Proceedings of the Workshop on Secure Programmable
Network Infrastructure, pages 1-7, 2020.

Diogo Barradas, Nuno Santos, Luis Rodrigues, Salvatore
Signorello, Fernando MV Ramos, and André Madeira.
FlowLens: Enabling Efficient Flow Classification for ML-
based Network Security Applications. In Proceedings of
the 28th Network and Distributed System Security Sym-
posium (San Diego, CA, USA, 2021.

15

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Milad Nasr, Amir Houmansadr, and Arya Mazumdar.
Compressive traffic analysis: A new paradigm for scal-
able traffic analysis. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications

Security, pages 2053-2069, 2017.

Davide Tammaro, Silvio Valenti, Dario Rossi, and Anto-
nio Pescapé. Exploiting packet-sampling measurements
for traffic characterization and classification. Interna-
tional Journal of Network Management, 22(6):451-476,
2012.

Valentin Carela-Espafiol, Pere Barlet-Ros, Albert
Cabellos-Aparicio, and Josep Solé-Pareta. Analysis of
the impact of sampling on NetFlow traffic classification.
Computer Networks, 55(5):1083-1099, 2011.

Alexa IM. http://s3.amazonaws.com/alexa-stati
c/top-1m.csv.zip. Accessed: 2021-07-05.

Cisco Umbrella Top 1M Domains List. https:
//www.trisul.org/devzone/doku.php/cisco_umbr
ella_top-1m_domains_list. Accessed: 2021-07-05.

The Majestic Million. https://majestic.com/repor
ts/majestic-million. Accessed: 2021-07-05.

Rick Hofstede, Pavel Celeda, Brian Trammell, Idilio
Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras. Flow
monitoring explained: From packet capture to data anal-
ysis with NetFlow and IPFIX. [EEE Communications
Surveys & Tutorials, 16(4):2037-2064, 2014.

Jodo Marco C Silva, Paulo Carvalho, and Solange Rito
Lima. Inside packet sampling techniques: exploring mod-
ularity to enhance network measurements. International
Journal of Communication Systems, 30(6):€3135, 2017.

Joshua Juen, Aaron Johnson, Anupam Das, Nikita
Borisov, and Matthew Caesar. Defending Tor from Net-
work Adversaries: A Case Study of Network Path Predic-
tion. Proceedings on Privacy Enhancing Technologies,
2015(2):171-187, 2015.

George Nomikos and Xenofontas Dimitropoulos.
tralXroute: Detecting IXPs in traceroute paths. In In-
ternational Conference on Passive and Active Network
Measurement, pages 346-358. Springer, 2016.

DuckDuckGo Tracker Radar. https://github.com/d
uckduckgo/tracker-radar. Accessed: 2021-07-05.

Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang,
and Yan Chen. Sketch-based change detection: Methods,
evaluation, and applications. In Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement,
pages 234-247, 2003.

https://blog.torproject.org/ blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/ blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/ blog/experimental-defense-website-traffic-fingerprinting
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.trisul.org/devzone/doku.php/cisco_umbrella_top-1m_domains_list
https://www.trisul.org/devzone/doku.php/cisco_umbrella_top-1m_domains_list
https://www.trisul.org/devzone/doku.php/cisco_umbrella_top-1m_domains_list
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://github.com/duckduckgo/tracker-radar
https://github.com/duckduckgo/tracker-radar

[53] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101-114, 2016.

[54] Paul Tune and Darryl Veitch. OFSS: Skampling for
the flow size distribution. In Proceedings of the 2014
Conference on Internet Measurement Conference, pages

235-240, 2014.

[55] OpenWPM: a Web Privacy Measurement Framework.
https://github.com/mozilla/OpenWPM. Accessed:

2021-10-04.

[56] Emily Hentgen. Measuring the Security of Website Fin-
gerprinting Defenses. https://infoscience.epfl.c
h/record/289258?&1n=en, 2019. Accessed: 2021-10-

08.

Rebekah Overdorf, Mark Juarez, Gunes Acar, Rachel
Greenstadt, and Claudia Diaz. How unique is your.
onion? an analysis of the fingerprintability of tor onion
services. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2021-2036, 2017.

[57]

[58] Web Bundles. https://wicg.github.io/webpackag
e/draft-yasskin-wpack-bundled-exchanges.htm

1. Accessed: 2021-10-08.

[59] Yashodhar Govil, Liang Wang, and Jennifer Rexford.
MIMIQ: Masking IPs with Migration in QUIC. In /0th
USENIX Workshop on Free and Open Communications

on the Internet (FOCI 20), 2020.

[60] Near-path NAT for IP Privacy. https://github.com
/bslassey/ip-blindness/blob/master/near_pa

th_nat.md. Accessed: 2021-10-08.

[61] Multiplexed Application Substrate over QUIC Encryp-
tion (MASQUE). https://datatracker.ietf.org/w

g/masque/about/. Accessed: 2021-10-08.

A Traceroute experiments at additional van-
tage points.

The client location impacts the resources that might be fetched
during a page load, and the paths taken by the network traffic
to the destination servers. This, in turn, impacts the ASes that
can view the traffic. In order to confirm that the trends we
observe in our traffic visibility experiment (Section 6.1) hold
at different locations, we collect additional traceroutes from
three additional vantage points located in Germany, UK, and
Singapore.

Figure 18 shows the distribution of webpages seen by dif-
ferent ASes, for our three vantage points. The number of total
ASes we encounter on the traceroute are 36, 35, and 23. Out
of these 13 ASes are common across all the vantage points.
While the ASes that observe the traffic vary across locations,
similar to Section 6.1 , only a small proportion of ASes that
observe a large proportion of the traffic. Three ASes see more
than 25% of the traffic for each vantage point: the client’s AS,
Google, and Cloudflare.

100 N I
g 75 . | 1.
.l
[0}
& 50 A
.l
ol |

0 - e ____

AS
(a)
100 . I
X 75 =
Nl
[}
% 50
s |l
g 25 -
=1
0 IIII--- _____
AS
(b)
100 N I
X 75 mm=
. |l
[}
$ 50
-l
g 25
ol ||
04 -,
AS

(©

Figure 18: Distribution of webpages seen by each AS, at three
vantage points. Only the client’s AS, Google, and Cloudflare
observe >25% of the traffic.

16

https://github.com/mozilla/OpenWPM
https://infoscience.epfl.ch/record/289258?&ln=en
https://infoscience.epfl.ch/record/289258?&ln=en
https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html
https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html
https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html
https://github.com/bslassey/ip-blindness/blob/master/near_path_nat.md
https://github.com/bslassey/ip-blindness/blob/master/near_path_nat.md
https://github.com/bslassey/ip-blindness/blob/master/near_path_nat.md
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/

B Additional graphics

outgoin of bytes I
. ota of bytes I -
incoming # of bytes I ——
incoming bytes I -
outgoing %é bylt((gs I
outgoin S — e
& cogl;mt éBOG ——
count 16728 -

count 2341B
total # (pkts)

0.00 0.05 0.10
Feature importance

Figure 19: Feature importance for quic when using

application-layer features (based on HAR captures).

17

	1 Introduction
	2 Background & Related Work
	3 Adversarial Model
	4 Datasets
	5 Unconstrained Adversary
	5.1 Protection against a powerful adversary

	6 Constrained Adversary
	6.1 Limited traffic visibility
	6.2 Limited processing power

	7 Application-Layer Defenses
	7.1 Web page structure in the quic dataset
	7.2 Application-layer defense strategies
	7.3 Application-layer defenses evaluation
	7.3.1 Defense Evaluation

	8 Discussion and Recommendations
	A Traceroute experiments at additional vantage points.
	B Additional graphics

